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Recap: Policy optimization

◦ The objective of reinforcement learning in terms of the policy parameters is given by the following:

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)].

Tabular parametrization
▶ Direct parameterization:

πθ(a|s) = θs,a, with θs,a ≥ 0,
∑

a
θs,a = 1.

▶ Softmax parameterization:

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )
.

Non-tabular parametrization
▶ Softmax parameterization:

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))
.

▶ Gaussian parameterization:

πθ(a|s) ∼ N
(

µθ(s), σ2
θ(s)
)

.
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Recap: Policy gradient methods

◦ The exact policy gradient method is a special case of the stochastic policy gradient method.

Stochastic policy gradient method
By stochastic policy gradient method, we mean the following update rule:

θt+1 ←− θt + αt∇̂θJ(πθt ),

where ∇̂θJ(πθt ) is a stochastic estimate of the full gradient of the performance objective and is used in
▶ REINFORCE [18]
▶ REINFORCE with baseline [18]
▶ Actor-critic [11]
▶ ...
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Previous lecture

◦ In the previous lecture, we answered the following two questions.

Question 1 (Non-concavity)
When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: ◦ Optimization wisdom: GD/SGD can converge to the global optima for “convex-like” functions:

J(π⋆)− J(π) = O(∥∇J(π)∥) or O(∥G(π)∥)

◦ Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

Question 2 (Vanishing gradient)
How to avoid vanishing gradients and further improve the convergence?

Remarks: ◦ Optimization wisdom: Use divergence with good curvature information.

◦ Take-away: Natural policy gradient achieves a faster convergence with better constants.
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This lecture

◦ In this lecture, we will answer the following questions.

Question 3 (theory)
◦ Why does NPG achieve a better convergence?

◦ How can we further improve the algorithm?

◦ To answer Question 3, we first revisit some optimization background (next few slides).

Question 4 (practice)
◦ How do we extend the algorithms to function approximation settings?

◦ How do we extend the algorithms to online settings without computing exact gradient?

◦ How do we extend the algorithms to off-policy settings?

◦ To answer Question 4, we will have a look at recent papers (second part of this lecture).
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The algorithmic path towards an understanding
◦ We will discover NPG and the two closely related algorithms: TRPO and OPPO.

◦ We will study the implications of advantage estimation and exploration in their convergence.

◦ We will further discuss the successful PPO algorithm.

Algorithm Convergence rate Unknown transitions Hard environments

Vanilla PG [16] O
(

16|S|κ2

c2(1−γ)5T

)
✗ ✗

Tabular NPG [2] O
(

2
(1−γ)2T

)
✗ ✓

Sample-based NPG O
(

1
1−γ

√
2 log |A|

T
+ √κϵstat

)
✓ ✗

OPPO [5] O
(

|S||A|√
(1−γ)3T

)
✓ ✓

Remarks: ◦ Here are the key quantities in the table:
▶ c = [mins,t πθt (a⋆(s)|s)]−1 > 0

▶ κ =

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

is larger when it is harder to explore and is possibly ∞.

▶ ϵstat is the statistical error incurred in estimating the advantage function Aπ .
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Revisiting gradient descent

◦ Consider the optimization problem minx∈Rd f(x).

▶ Gradient descent (GD):
xt+1 = xt − η∇xf(xt).

▶ Equivalent regularized form:

xt+1 = arg min
x

{
∇xf(xt)⊤(x− xt) +

1
2η
∥x− xt∥2

2
}

.

▶ Equivalent trust region form:

xt+1 = arg min
x
∇xf(xt)⊤(x− xt), s.t. ∥x− xt∥2 ≤ η∥∇xf(xt)∥.

Question: ◦ Would GD give the same trajectory under invertible linear transformations (x→ Ax)?
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Revisiting gradient descent (cont’d)

Figure: GD is not invariant w.r.t. linear transformations.
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Recall Bregman divergences

Bregman divergence
Let ω : X → R be continuously differentiable and 1-strongly convex w.r.t. some norm ∥ · ∥ on X . The Bregman
divergence Dω associated to ω is defined as

Dω(x, y) = ω(x)− ω(y)−∇ω(y)T (x− y),

for any x, y ∈ X .

Examples: ◦ Euclidean distance: ω(x) = 1
2∥x∥

2
2, Dω(x, y) = 1

2∥x− y∥2
2.

◦ Mahalanobis distance: ω(x) = 1
2 xT Qx (where Q ⪰ I), Dω(x, y) = 1

2 (x− y)T Q(x− y).

◦ Kullback-Leibler divergence: X = {x ∈ Rd
+ :
∑d

i=1 xi = 1}, ω(x) =
∑d

i=1 xi log xi

Dω(x, y) = KL(x||y) :=
∑d

i=1
xi log

xi

yi
.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 43



Background: Mirror descent

Mirror descent (Nemirovski & Yudin, 1983)
For a given strongly convex function ω and initialization x0, the iterates of mirror descent [3] are given by

xt+1 = arg min
x∈X

{⟨∇xf(xt), x− xt⟩+
1
ηt

Dω(x, xt)}.

Examples: ◦ Gradient descent: X ⊆ Rd, ω(x) = 1
2∥x∥

2
2, Dω(x, xt) = 1

2∥x− xt∥2
2.

xt+1 = ΠX (xt − ηt∇xf(xt)).

◦ Entropic mirror descent [3]: X = ∆d, ω(x) =
∑d

i=1 xi log xi, Dω(x, xt) = KL(x||xt)

xt+1 ∝ xt ⊙ exp(−ηt∇xf(xt)),

where ⊙ is element-wise multiplication and exp(·) is applied element-wise.

◦ Entropic Mirror Descent attains nearly dimension-free convergence [3] (also see Chapter 4 [4]).

◦ See Lecture 3 Supplementary Material for more details and examples.
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Background: Fisher information and KL divergence

Fisher Information Matrix
Consider a smooth parametrization of distributions θ 7→ pθ(·), the Fisher information matrix is defined as

Fθ = Ez∼pθ [∇θ log pθ(z)∇θ log pθ(z)⊤].

Remarks: ◦ It is an invariant metric on the space of the parameters.

◦ Fisher information matrix is the Hessian of KL divergence.

Fθ0 =
∂2

∂θ2 KL(pθ0 ||pθ)
∣∣
θ=θ0

.

◦ The second-order Taylor expansion of KL divergence is given by

KL(pθ0 ||pθ) ≈
1
2

(θ − θ0)⊤Fθ0 (θ − θ0).
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Background: Natural gradient descent

◦ Consider the optimization problem minx∈∆ f(x) and represent x by pθ(·).

▶ Natural gradient descent (Amari, 1998):

θt+1 = θt − η(Fθt )†∇θf(θt).

▶ Equivalent regularized form:

θt+1 = arg min
θ

{
∇θf(θt)⊤(θ − θt) +

1
2η

(θ − θt)⊤Fθt (θ − θt)
}

.

▶ Equivalent trust region form:

θt+1 = arg min
θ

∇θf(θt)⊤(θ − θt), s.t.
1
2

(θ − θt)⊤Fθt (θ − θt) ≤
1
2

η2∇θf(θt)⊤F †
θt
∇θf(θt).
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Natural Policy Gradient (NPG)

Natural Policy Gradient (Kakade, 2002)[9]
Given the reinforcement learning objective maxθ J(πθ) := E

[∑∞
t=0 γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)],

the iterates of NPG are given by
θt+1 = θt + η(Fθt )†∇θJ(πθt ),

where η > 0 is the step-size of the algorithm.

Key elements: ◦ Fθ is the Fisher Information Matrix:

Fθ = E
s∼λ

πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
.

◦ ∇θJ(πθ) is the policy gradient, which can be written as follows

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ ,a∼πθ(·|s) [Aπθ (s, a)∇θ log πθ(a|s)] .

◦ Aπθ (s, a) is the advantage function:

Aπθ (s, a) = Qπθ (s, a)− V πθ (s).

◦ C† is the Moore-Penrose inverse of a matrix C.
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Interpretation of NPG

◦ The update rule of NPG can be viewed as solving the quadratic approximation of the problem:

θt+1 ≈ arg max
θ

{
J(πθ), s.t. KL (pθt (τ)||pθ(τ)) ≤ δ

}
,

where pθ(τ) is the probability measure of the random trajectory τ = (s0, a0, r1, . . . , ...).

Explanation: ◦ Approximate the objective with the first-order Taylor expansion:

J(πθ) ≈ J(πθt ) +∇θJ(πθt )⊤(θ − θt).

◦ Approximate the constraint with the second-order Taylor expansion (See Slide 11):

KL (pθt (τ)||pθ(τ)) ≈
1
2

(θ − θt)⊤Fθt (θ − θt) ≤ δ

◦ Set δ = 1
2 η2∇θf(θt)⊤F †

θt
∇θf(θt) and see Slide 13

Question: ◦ How can we compute the iterates of natural policy gradient efficiently?
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Computing natural policy gradient
◦ As opposed to naively computing (Fθ)†∇θJ(πθ) in NPG, we will use a key identity.

Equivalent form of NPG (Appendix C.3 [2])
Let w⋆(θ) be such that

(1− γ)(Fθ)†∇θJ(πθ) = w⋆(θ).

Then, w⋆(θ) is the solution to the following least squares minimization problem:

w⋆(θ) ∈ arg min
w
E

s∼λ
πθ
µ ,a∼πθ(·|s)

[(
w⊤∇θ log πθ(a|s)−Aπθ (s, a)

)2
]

, (1)

where Aπθ (s, a) is the advantage function Aπθ (s, a) = Qπθ (s, a)− V πθ (s).

Proof:

∇wEs∼λ
πθ
µ ,a∼πθ(·|s)

[(
w⊤∇θ log πθ(a|s)−Aπθ (s, a)

)2
]∣∣∣

w⋆(θ)
= 0

2w⋆(θ)⊤ E
s∼λ

πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]︸                                                                         ︷︷                                                                         ︸
Fθ

−2E
s∼λ

πθ
µ ,a∼πθ(·|s) [Aπθ (s, a)∇θt log πθ(a|s)]︸                                                              ︷︷                                                              ︸

(1−γ)∇θJ(πθ)

= 0

w⋆(θ) = (1− γ)(Fθ)†∇θJ(πθ)
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Computing natural policy gradient
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where Aπθ (s, a) is the advantage function Aπθ (s, a) = Qπθ (s, a)− V πθ (s).

Remarks: ◦ Note that since the update rule of NPG is θt+1 = θt + η(Fθ)†∇θJ(πθ), we can rewrite NPG as:

θt+1 = θt +
η

1− γ
w⋆(θt).

◦ w⋆(θt) can be obtained by solving (1) via conjugate gradients, SGD, and other solvers.
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Example 1: Tabular NPG under softmax parameterization

◦ With softmax parameterization, the NPG becomes the policy mirror descent algorithm (Slide 11)

NPG parameter update
Consider the softmax parameterization πθ(a|s) = exp(θs,a)∑

a′ exp(θs,a′ )
and denote πt = πθt , the NPG parameter

update can be simplified to the following:

θt+1 = θt +
η

1− γ
Aπt .

Proof available in the Supplementary material.

NPG policy update + softmax parametrization = policy mirror descent
In policy space, the induced update corresponds to the following:

πt+1(a|s) = πt(a|s)
exp(η/(1− γ) ·Aπt (s, a))

Zt(s)
, where Zt(s) =

∑
a′ exp(θt,s,a′ )∑

a′ exp(θt,s,a′ + η/(1− γ) ·Aπt (s, a′))
.
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Example 2: NPG with linear function approximation
◦ In this case, we can also express the NPG update rule via a regression problem.

NPG parameter update
Consider πθ(a|s) = exp(θ⊤ϕ(s,a))∑

a′ exp(θ⊤ϕ(s,a′))
and denote πt = πθt . In this case we have that

∇θ log(πθ(a|s)) = ϕ(s, a)−
∑

a′ πθ(a|s′)ϕ(s, a′) and consequently:

w⋆(θ) ∈ arg min
w
E

s∼λ
πθ
µ ,a∼πθ(·|s)

[(
w⊤

(
ϕ(s, a)−

∑
a′

πθ(a|s′)ϕ(s, a′)

)
−Aπθ (s, a)

)2]
.

Finally, the induced NPG parameter update becomes: θt+1 = θt + η
1−γ

w⋆(θt)

NPG policy update + softmax parametrization = policy mirror descent
Similarly, we can obtain a mirror descent update rule in the policy space.

πt+1(a|s) = πt(a|s)
exp
(

η
(1−γ) w⋆(θt)⊤ϕ(s, a)

)
Zt(s)

, where Zt(s) =

∑
a′ exp(θt,s,a′ )∑

a′ exp
(

θt,s,a′ + η
(1−γ) w⋆(θt)⊤ϕ(s, a′)

)
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Convergence of tabular NPG with softmax parametrization
◦ Question: In the case of NPG with softmax parametrization, how fast do we converge to the optimal solution?

NPG policy update
Remember that for the softmax parametrization we have:

πt+1(a|s) = πt(a|s)
exp(η/(1− γ) ·Aπt (s, a))

Zt(s)

Convergence of tabular NPG [2]
In the tabular setting, for any η ≥ (1− γ)2 log |A| and T > 0, the tabular NPG satisfies

J(π⋆)− J(πT ) ≤
2

(1− γ)2T
.

Remarks: ◦ Nearly dimension-free convergence, no dependence on |A|, |S|.
◦ No dependence on distribution mismatch coefficient.
◦ In the case of known environment, η =∞ recovers Policy Iteration (Supplementary material)

Question: ◦ What is the computational cost of this (nearly) dimension-free method?
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Sample-based NPG

◦ Questions: What if we do not know the environment? Can we estimate Aπt (s, a)?

Sample-based NPG
Initialize policy parameter θ0 ∈ Rd, step size η > 0, α > 0
for t = 0, 1, . . . , T − 1 do {NPG steps}

Initialize w0, denote πt = πθt

for n = 0, 1, . . . , N − 1 do {Gradient Descent steps for the regression problem}
Sample s ∼ λπt

µ , a ∼ πt(·|s)

Estimate Â(s, a) {Unbiased estimator of Aπt (s, a)}
Update wn+1 ← wn − α(w⊤∇θ log πt(a|s)− Â(s, a)) · ∇θ log πt(a|s) {Gradient Descent step}

end for
Update θt+1 = θt + η

1−γ
wN {NPG step}

end for
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Extra: How to sample from an occupancy measure and estimate Â(s, a)?

Sampling routine for λπ
µ

Input : a policy π.
Sample T ∼ Geom(1− γ) and s0 ∼ µ.
for t = 0, 1, . . . , T − 1 do

Sample at ∼ π(·|st).
Sample st+1 ∼ P(·|st, at).

end for
Output : (sT , aT ).

An estimation routine for Q̂(s, a)
Input: a policy π.
Sample (sT , aT ) ∼ λπ

µ, Initialize Q̂ = 0.
while True do

Sample sT +1 ∼ P(·|sT , aT ).
Sample aT +1 ∼ π(·|sT ).
Set Q̂ = Q̂ + rT +1.
Set T = T + 1.
With probility 1− γ terminate.

end while
Output : Q̂.

Remarks: ◦ See Algorithm 1 in [2].

◦ We sample from the occupancy measure by generating (sT , aT ) with T ∼ Geometric(1− γ).

◦ Q̂ is an unbiased estimate of Q(sT , aT ).

◦ Unbiased estimates of V (sT ) and A(sT , aT ) can be obtained from Q̂(s, a).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 43



Convergence of sample-based NPG with function approximation
◦ We provide convergence guarantees for sample-based NPG in the linear function approximation case.

Convergence of sampled-based NPG (informal)
Let πθ(a|s) = exp(θ⊤ϕ(s,a))∑

a′ exp(θ⊤ϕ(s,a′))
and θ⋆ be the parameters asociated to the optimal policy.

E

[
min
t≤T

J(πθ⋆ )− J(πθt )
]
≤ O

(
1

1− γ

√
2 log |A|

T
+
√

κϵstat + √ϵbias

)
,

where ϵstat is how close wt is to a w⋆(θt) (statistical error) and ϵbias is how good the best policy in the class is
(function approximation error).

Remarks: ◦ ϵbias = 0 under the so called “realizability” assumption for the features i.e.,

∀π ∈ Π, ∃θ s.t. Qπ(s, a) = θ⊤ϕ(s, a) ∀s, a ∈ S ×A.

◦ κ =

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

quantifies how exploratory the initial distribution is and might be unbounded

Question: ◦ Can we obtain an algorithm that converges in hard to explore environments (unbounded κ)?
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Markov Decision Processes - Experts (MDP-E) [7]

Markov Decision Processes - Experts (MDP-E)
Initialize policy π0, learning rate η

for t = 0, 1, . . . , T − 1 do
Evaluate Qπt (s, a) for every state action pair.
πt+1(a|s) ∝ πt(a|s) exp ηQπt (s, a).

end for
Output : A policy sampled uniformly at random from the sequence π0, . . . , πT −1.

Remarks: ◦ Check out the course Online Learning in Games!

◦ MDP-E is a no-regret algorithm for adversarially changing rewards.

◦ Therefore, it converges to the optimal policy for a fixed reward.
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Exploration in Policy Gradient methods
◦ When the transition dynamics of the agent are unknown the agent needs to explore the state space.

◦ Unless the initial state distribution is exploratory enough to guarantee κ small.

◦ Recall that κ is a constant appearing in the bound for sample based NPG.

◦ Can we incorporate exploration techniques in policy gradient?

e.g., ϵ-greedy [17] and UCB [8] (we studied in the first coding exercise.)
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Recall: Finite Horizon RL

◦ The agent interacts with the environment for K rounds with horizon H.

◦ The objective is to find the policy that maximizes Eπ

[∑H

h=1 r(sh, ah)
]
.

◦ The optimal policy is non stationary.

◦ A non stationary policy is a collection of H policies π1, . . . , πH .

◦ π1 is used for the first decision, π2 is used for the second decision and so on ....

◦ The value functions depend on the stage h, that is

Qπ
h(s, a) = Eπ

[ H∑
h′=h

r(sh′ , ah′ )|sh = s, ah = a

]
, V π

h (s) = Eπ

[ H∑
h′=h

r(sh′ , ah′ )|sh = s

]
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Optimistic variant of the Proximal Policy Optimization (OPPO)

◦ Key idea: Perform updates with optimistic estimates of the value function.

◦ OPPO resambles NPG/MDP-E but with an optimistic evaluation step.

OPPO [5] (simplified version)
Initialize policy parameter θ0 ∈ Rd, step size η > 0, α > 0
for t = 0, 1, . . . , T − 1 do

Policy Evaluation
Estimate bonus and transitions bonush(s, a) and P̂h(s′|s, a)

Compute optimistic value functions Qt
h

Policy Improvement
Update policies at every h, s, a with a NPG/MDP-E step

πt+1
h

(a|s) ∝ πt
h(a|s) exp ηQt

h(s, a)

end for
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Estimate transition and bonuses

◦ Compute the empirical average of the transition dynamics.

◦ Set the function bonust
h(s, a) proportional to the square root of the inverse number of visits for s, a.

◦ Intuition: The more often we visit a state, the more we expect the uncertainty to reduce.

Estimating transitions and bonuses
for t = 0, 1, . . . , T − 1 do

for h = 0, 1, . . . , H − 1 do
Visit the state action pair (st

h, at
h) and next state st

h+1.

Update counts Nh(st
h, at

h, st
h+1)← Nh(st

h, at
h, st

h+1) + 1, N(st
h, at

h)← N(st
h, at

h) + 1.

Estimate transtion P̂h(s′|s, a) = Nh(s,a,s′)
Nh(s,a)+1 for all s, a, s′.

Compute exploration bonuses bonush(s, a) ≈
√

1
N(st

h
,at

h
) .

end for
end for
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Estimate optimistic value function

◦ Having estimated P̂h(s′|s, a) and the bonus bonust
h(s, a), we can compute Qt

h(s, a) as follows.

Backward induction to estimate Qt.
Initialize Qt

H+1(s, a) = 0.
for h = H, . . . , 1 do

Recurse backward to compute Qt
h

Qt
h(s, a) = rt

h(s, a) + bonust
h(s, a) +

∑
s′,a′

P̂h(s′|s, a)πh+1(a′|s′)Qt
h+1(s′, a′)

Qt
h(s, a) = clip(Qt

h(s, a); 0, H − h + 1)

end for

Remark: ◦ If it holds that
∣∣∑

s′ (P̂h(s′|s, a)− Ph(s′|s, a))V (s′)
∣∣ ≤ bonush(s, a), then Optimism

and Bounded Optimism hold.
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Provable exploration in policy gradient

◦ Optimism means to overestimate the value of Qπt (s, a) at every state action pairs.

◦ Formally, it means that Qh(s, a) satisfies

V t
h(s) = Ea∼π(·|s)[Qt

h(s, a)]

Qt
h(s, a) ≥ rt

h(s, a) +
∑

s′

P(s′|s, a)V t
h(s′) (Optimism)

◦ Notice that Qπt (s, a) would be the fixed point of the second expression.

◦ At the same time we need an estimate that is not too optimistic.

rt
h(s, a) +

∑
s′

P(s′|s, a)V t
h(s′) + 2bonust

h(s, a) ≥ Qt
h(s, a) (Bounded Optimism)

◦ bonust
h(s, a) needs to be decreasing with the number of visits for (s, a).

◦ This ensures that Qt
h(s, a)→ Qπt

h
(s, a)
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Benefit of OPPO
◦ The regret bound of OPPO:

∑T

t=1 V ⋆(s1)− V πt (s1) ≤ O
(∑H

h=1

∑T

t=1 bonust
h(st

h, at
h)
)

.

◦ Next, one shows that
∑H

h=1

∑T

t=1 bonust
h(st

h, at
h) ≤ O(

√
T ).

Theorem
Let π1, π2, . . . , πT the sequence of non stationary policies generated by OPPO. Then it holds that

T∑
t=1

V ⋆(s1)− V πt (s1) ≤ O
(√

T
)

This holds also when the reward function can change adversarially from episode to episode.

Recall convergence of sampled-based NPG

E

[
min
t≤T

J(πθ⋆ )− J(πθt )
]
≤ O

(
1

1− γ

√
2 log |A|

T
+
√

κϵstat + √ϵbias

)
,

where κ depends on the initial distribution and the environment.

Remarks: ◦ OPPO is much better because it removes the dependence on κ.
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Revisiting baselines

◦ The baselines can be used as a variance reduction mechanism.

◦ Actually, one can prove which choice for the baseline guarantees minimum variance.

Theorem
Consider the gradient with baseline ∇̂θJ(πθ) =

∑∞
t=1 (Qπθ (st, at)− b(st))∇ log πθ(at|st) for a trajectory

τ ∼ pθ. Then, b⋆(s) = arg minb:S→R
[
Var
[
∇̂θJ(πθ)|s

]]
satisfies

b⋆(s) =
∥Qπθ (s, a) log πθ(a|s)∥
∥∇ log πθ(a|s)∥

.
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Is it always good to minimize variance?

◦ The answer is no. Because, reducing the variance of the baseline can hinder exploration.

◦ As a result, the minimum variance baseline may lead to a suboptimal policy.

◦ Here we describe the result in [6].

Theorem
Theorem 1 in [6] There exists a three-arm bandit where using the stochastic natural gradient on a softmax
parameterized policy with the minimum-variance baseline can lead to convergence to a suboptimal policy with
positive probability, and there is a different baseline (with larger variance) which results in convergence to the
optimal policy with probability 1.
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Explore the baseline effect

◦ Three-arm bandit enviroment example:

◦ The optimal policy plays the action in right corner.

◦ That is where the trajectories with baselines b+
θ

and V πθ converge to .

◦ In the other cases, there are some trajectories converging to the top corner.

◦ These results confirm the issue with the minimum variance baseline.
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Unbounded variance case [12]

◦ Consider a bandit experiment with stochastic rewards with an action dependent distribution R(a).

◦ A common unbiased estimator is constructed using importance sampling.

◦ Using an action â ∼ π and observe r ∼ R(â).

r̂(a) =
r

π(a)
1(a = â)

◦ If we consider an additional baselines, we get the estimator

r̂(a) =
r − b

π(a)
1(a = â)

◦ The variance is unbounded no matter how b is chosen.
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Popular baselines

TRPO (ICML, 2015)

PPO (arXiv, 2017)

OpenAI implementation: https://github.com/openai/baselines
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Trust region policy optimization (TRPO)

◦ How to choose the step-size of the stochastic policy gradient method? Trust region.

TRPO (key idea) [14]
TRPO computes the marginal benefit of a new policy with respect to an old policy:

θt+1 = arg max
θ

E
s∼λ

πθt
µ ,a∼πθt

(·|s)

[
πθ(a | s)
πθt (a | s)

Aπθt (s, a)
]

,

s.t. E
s∼λ

πθt
µ

[KL(πθ(· | s)∥πθt (· | s))] ≤ δ.

where the constraint measures the distance between two policies.

Remarks: ◦ The surrogate objective can be viewed as linear approximation in π of J(πθ):

J(π) = J(πt) +
1

1− γ
Es∼λπ

µ,a∼π(a|s)[Aπt (s, a)]. (PDL)

◦ It can be approximated by a natural policy gradient step.

◦ Line-search can ensure performance improvement and no constraint violation.
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TRPO: A detailed look at the implementation

◦ Compute a search direction, which (almost) boils down to natural policy gradient.
▶ The first order approximation of the objective.

E
s∼λ

πθt
µ ,a∼πθt

(·|s)

[
πθ(a | s)
πθt (a | s)

Aπθt (s, a)
]
≈ ⟨∇θJ(θk), θ − θk⟩

▶ The second order expansion of the constraints

E
s∼λ

πθt
µ

[KL(πθ(· | s)∥πθt (· | s))] ≈
1
2

(θ − θk)T F (θk)(θ − θk)

◦ Execute line seach along the direction F (θk)†∇θJ(θk).

▶ Approximations may result in a solution that does not satisfy the origin trust region.
▶ Select the largest possible step size η that xt+1 = xt + ηF (θk)†∇θJ(θk) satisfies the original constraints:

η =

√
2δ

∇θJ(θk)⊤F (θk)†∇θJ(θk)
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Equivalence between TRPO and MDP-E [7]

◦ The previous result proves that TRPO produces a monotonically improving sequence of policies [14, Section 3].

◦ We can prove a stronger result noticing that TRPO is equivalent to MDP-E [13, Section B.3] and [7].
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Proximal policy optimization (PPO2)
◦ Intuition: The main problem of TRPO lies in numerically computing the Quadratic Program.

◦ Solution: Theoretical update equation is optimizing in a local region.

PPO uses no formal constraints and instead clips the distance between policies in the loss function.

PPO (key idea) [15]

max
θ

E
s′∼λ

πθt
µ ,a∼πθt

(·|s)
min
{

πθ(a|s)
πθt (a|s)

Aπθt (s, a), clip
(

πθ(a|s)
πθt (a|s)

; 1− ϵ; 1 + ϵ

)
Aπθt (s, a)

}

Remarks: ◦ PPO penalizes large deviations directly inside the objective function through clipping the ratio πθ
πθt

:

clip(x; 1− ϵ; 1 + ϵ) =

1− ϵ, if x < 1− ϵ

1 + ϵ, if x > 1 + ϵ

x, otherwise

◦ Run SGD. No need to deal with the KL divergence or trust region constraints.

◦ Vastly adopted in practice but little is known about its theoretical properties.
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Numerical performance [15]
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More applications

Figure: PPO performs well in many locomotion task and games.

◦ Some links:
▶ https://www.youtube.com/watch?v=hx_bgoTF7bs
▶ https://openai.com/blog/openai-baselines-ppo/
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Summary

Figure from Schulman’s slide on PPO in 2017.
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Summary

Vanilla Policy Gradient [16] Gradient Descent
REINFORCE [18] Stochastic Gradient Descent

Natural Policy Gradient [9]
Mirror DescentTRPO [1]

PPO [15]
Conservative Policy Iteration [10] Frank Wolfe

... ...
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Supplementary Material
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Tabular NPG under softmax parametrization.

Proof.
We need to show that w∗(θt) = Aπt in the case of softmax parametrization. To do so, we will first compute:

∇θ log(πθ(a|s)) = ∇θ

(
θs,a − log

(∑
a′

exp(θs,a′ )

))
= es,a − πθ(·|s) .

In this case, we can check that Aπθ ∈ arg minw Es∼λ
πθ
µ ,a∼πθ(·|s)

[(
w⊤∇θ log πθ(a|s)−Aπθ (s, a)

)2
]

because: (
Aπθ ⊤∇θ log πθ(a|s)−Aπθ (s, a)

)
=
(

Aπθ ⊤(es,a − πθ(·|s))−Aπθ (s, a)
)

= Aπθ (s, a)−Aπθ (s, a) +
∑

a′

πθ(a′|s))Aπθ (s, a′)

[Def. of Aπθ (s, a)] =
∑

a′

πθ(a′|s))(Qπθ (s, a′)− V πθ (s))

[Def. of V πθ (s)] = V πθ (s))− V πθ (s))
= 0

□
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Proof of tabular NPG convergence

Lemma (Policy Improvement)
For any policy π and πt+1 being obtained with NPG in the softmax parametrization setup, we can express the
performance difference as:

J(π)− J(πt) =
1
η
Es∼λπ

µ
[KL(π(·|s)||πt(·|s))− KL(π(·|s)||πt+1(·|s)) + log Zt(s)] .

Proof sketch: ◦ Recall from Performance Difference Lemma:

J(π)− J(πt) =
1

1− γ
Es∼λπ

µ,a∼π(a|s)[Aπt (s, a)].

◦ From the update rule πt+1(a|s) = πt(a|s) exp(ηAπt (s,a)/(1−γ))
Zt(s) , we have

Aπt (s, a) =
1− γ

η
log

πt+1(a|s)Zt(s)
πt(a|s)

.

◦ Combing these two equations, we have the above lemma.
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Proof of Tabular NPG convergence (cont’d)

Proof (NPG): ◦ Setting π = π⋆ in the previous lemma and telescoping from t = 0, . . . , T − 1

1
T

T −1∑
t=0

J(π⋆)− J(πt) ≤
1

ηT
E

s∼λπ⋆
µ

[KL(π⋆(·|s)||π0(·|s))] +
1

ηT

T∑
t=0

E
s∼λπ⋆

µ
[log Zt(s)] .

◦ Setting π = πt+1 in the previous lemma, we have

J(πt+1)− J(πt) ≥
1
η
E

s∼λ
πt+1
µ

[log Zt(s)] ≥
1− γ

η
Es∼µ [log Zt(s)] ≥ 0, ∀µ.

◦ Combining these two equations and the fact that J(π) ≥ 1
1−γ

implies that

1
T

T −1∑
t=0

J(π⋆)− J(πt) ≤
log |A|

ηT
+

1
(1− γ)2T

.
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NPG in the η = ∞ setup.

In the case of being able to compute Aπθ , and setting η =∞, we can see that NPG is equivalent to Policy
Iteration (Lecture 2). Taking the NPG update rule for the softmax parametrization to the limit:

πt+1(a|s) = lim
η→∞

πt(a|s) ·
exp(η/(1− γ)Aπt (s, a)) ·

∑
a′ exp(θt,s,a′ )∑

a′ exp(θt,s,a′ + η/(1− γ)Aπt (s, a′))

= lim
η→∞

πt(a|s)
eθt,s,a

·
exp(θt,s,a + η/(1− γ)Aπt (s, a)) ·

∑
a′ exp(θt,s,a′ )∑

a′ exp(θt,s,a′ + η/(1− γ)Aπt (s, a′))

= lim
η→∞

exp(θt,s,a + η/(1− γ)Aπt (s, a))∑
a′ exp(θt,s,a′ + η/(1− γ)Aπt (s, a′))

[ lim
η→∞

softmax(η · x)i = 1{xi = max x}] = 1

{
a = max

a′
Aπt (s, a′)

}
.

This means under η =∞, we have that NPG gives us a greedy policy, where the action taken is given by:

arg max
a′

Aπt (s, a′) = arg max
a′

Qπt (s, a′)− V πt (s) = arg max
a′

Qπt (s, a′) ,

which is precisely the update formula for Policy Iteration.
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Proof for the analytical expression with lowest variance.

Proof.
Start noticing that

Var
[
∇̂θJ(πθ)|s

]
= E
[∥∥∇̂θJ(πθ)

∥∥2
|s
]
−
∥∥E [∇̂θJ(πθ)|s

]∥∥2

= E
[∥∥∇̂θJ(πθ)

∥∥2
|s
]
−
∥∥Ea∼πθ(·|s) [Qπθ (s, a)∇ log πθ(a|s)]

∥∥2

Therefore ∇bVar
[
∇̂θJ(πθ)|s

]
= ∇bE

[∥∥∇̂θJ(πθ)
∥∥2
|s
]

. Developing the norm squared and differentianting, we
get

∇bE

[∥∥∇̂θJ(πθ)
∥∥2
|s
]

= 2
(

b(s)Ea∼πθ(·|s)
[
∥∇ log πθ(a|s)∥2]− Ea∼πθ(·|s)

[
Qπθ (s, a) ∥∇ log πθ(a|s)∥2])

Therefore, the proof is concluded setting b⋆ to minimize the latter expression. □
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